
Seeking Efficiency for the Accurate Draping
of Digital Garments in Production

José M. Pizana , Gabriel Cirio , Alicia Nicas , and Alejandro Rodríguez

1) Spring Outfit 2) Sports T-Shirt 3) Psychedelic Dress 4) Sweatshirt and Skirt
225K DoFs 88K DoFs 140K DoFs 168K DoFs

Fig. 1: Four of the production garments used to benchmark the different features presented in this paper. Together with the six other
garments of Figure 4, they represent a wide range of possible real-world patterns, with varying constructions and complexity, all used in
a production environment.

Abstract— Digital garments are set to revolutionize the apparel industry in the way we design, produce, market, sell and try-on real
garments. But for digital garments to play a central role, from designer to consumer, they must be a faithful digital replica of their real
counterpart: a digital twin. Yet, most industry-grade tools used in the apparel industry do not focus on accuracy, but rather on producing
fast and plausible drapes for interactive editing and quick feedback, thus limiting the value and the potential of digital garments. The
key to accuracy lies in using the proper underlying simulation technology, well documented in the academic literature but historically
sidelined in the apparel industry in favor of simulation speed. In this paper, we describe our industry-grade cloth simulation engine, built
with a strong focus on accuracy rather than sheer speed. Using a global integration scheme and adopting state of the art simulation
practices from the Computer Graphics field, we evaluate a wide range of algorithms to improve its convergence and overall performance.
We provide qualitative and quantitative insights on the cost and capabilities of each of these features, with the aim of giving valuable
feedback and useful guidelines to practitioners seeking to implement an accurate and robust draping simulator.

Index Terms—Performance, Computer Animation, Simulation, Computer-aided Design

1 INTRODUCTION

The accurate simulation of digital garments opens exciting opportu-
nities for the apparel industry. When simulated with enough fidelity,
digital garments can play a central role during the design stage of a gar-
ment. Designers can have immediate feedback on their design choices,
be it in patternmaking, sewing or fabric selection, by seeing how the
digital garment drapes over a digital fit model. Digitalization frees
the designer from building physical prototypes in the early stages of
garment development, significantly reducing the development time, the
cost and the ecological footprint of the process. At the other end of
the development process, brands can leverage digital garments for high

José M. Pizana, Gabriel Cirio, Alicia Nicas, and Alejandro Rodríguez are
with SEDDI. E-mails in order of authorship: jmpizanagarcia@gmail.com,
gabriel.cirio@gmail.com, alicia.nicasmiquel@gmail.com,
alejandrora88@gmail.com

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

fidelity digital photography, and enable a return-free, personalized and
compelling shopping experience by letting consumers try the digital
garment through online virtual try on.

While the apparel industry is increasingly adopting digital garments,
the adoption rate is surprisingly slow [5]. And even for those who
have embraced digital transformation, the penetration is relatively shal-
low [27]: digitalization is often siloed to specific development stages,
and existing solutions struggle to bridge the gap between design and
production [52], limiting digital garments to a minor role.

Many engineering, manufacturing and even service industries, such
as aerospace, automobile, electronics, architecture, etc, have largely
embraced digitalization early on as an integral part of their design and
development process. Why, then, are we not seeing a broader adoption
of digital tools, and particularly digital twins, in the apparel industry?

One important reason is that garments are notably difficult to simu-
late accurately. Garments are highly deformable objects: their draping
is centerpiece to the fit, the comfort, the functionality, and the appeal
of a garment. Unfortunately, highly deformable objects are in general
particularly hard to simulate, with collisions appearing in unpredictable
places, strong nonlinearities stemming from large deviations from the
rest pose, and a lack of clear linearization paths to simplify the prob-
lem. In addition, the variety of fabrics that can be used in a garment is
virtually infinite, with mills producing tens of thousands of new textiles
every year. Even seemingly subtle mechanical differences between two

https://orcid.org/0000-0003-2918-9997
https://orcid.org/0000-0001-8269-0217
https://orcid.org/0009-0001-2668-6878
https://orcid.org/0000-0001-8085-1523

fabrics must be accurately captured by the simulation to fully depict
a true digital twin without compromising the designer’s intent. Nu-
merically, dealing with the very high stretch but low bending stiffness
of most fabrics, as well as their anisotropic and nonlinear behavior, is
already a problem on its own. In addition, garments are complex as-
semblies of all sorts of objects beyond pieces of fabric, such as buttons,
zippers, drawcords, sewing threads, etc, intertwined into one single but
highly heterogeneous entity.

In addition to the complexity of accurately simulating a digital
garment, and perhaps even due to it, existing solutions in the apparel in-
dustry trade off accuracy for speed. All garment simulation approaches
in the academic literature tackle this inevitable trade off by favoring
one or the other. For a given computational budget, if speed is prior-
itized then accuracy will degrade. The result is a fast and interactive
simulation of the garment, which provides immediate visual feedback
and lets the user make adjustments in real time. While useful on its
own, this approach sacrifices accuracy for the sake of speed and a fully
interactive experience: fast techniques use many of the approximations
often found in videogame technology, far from the accuracy standards
one would need in an engineering tool.

In the context of drape simulations, and of this work in particular,
we understand accuracy as the capability of the digital fabric to stretch
and bend like its real counterpart. This definition naturally extends to
the garment as a whole, which is a combination of pieces of fabric sewn
together. However, it is a purposely narrow definition: while fabric is
arguably the predominant factor in the way a garment drapes, it is far
from being the only one. Seams, trims, contact with the body and with
itself, and soft body deformations are just a few examples of elements
that can influence the final drape, and whose accuracy we exclude
from our study for the sake of conciseness without dismissing their
importance. With this context and definition in mind, we argue that
the characteristic stiffness of real fabrics can challenge speed-oriented
solvers, leading to insufficient convergence and therefore inaccuracy.
Common manifestations of an inaccurate treatment are overly elastic
behaviors [20], poor wrinkle formation [37] or more subtle, but also
important artifacts, such as incorrect sliding treatment [38].

In the side figure, the avatar
lifts his right leg, stretching the
dress caught around the knee.
For some real-time simulators
with aggressive computational
budget constraints, fabric can
become unnaturally stretched
(left). With an accurate simula-
tor (right) that properly enforces
fabric inextensibility, the fabric
resists stretching and ends up
sliding up the leg. Figure 13 and
Appendix D show additional

side by side examples to highlight the difference of accuracy between
simulators.

We argue that this strong focus on real time simulation and fast
draping results, with the resulting loss in accuracy, is what has prevented
a more widespread use of digital garments in the apparel industry. A
true, complete, in-depth adoption of digital garment tools can only be
achieved if the digital garment is an accurate digital replica of the real
garment: a digital twin. This way, digital garments can be used to make
decisions from the earliest design stages, and all along its development
lifecycle, bridging the gap between design, production and retail.

Accuracy starts by using the right simulation tools, the right simu-
lation solver. There is an enormous body of research in the Computer
Graphics field about the simulation of cloth, spanning almost 30 years.
While initially limited to the visual effects and videogame industries,
modern simulation techniques have the potential to produce highly
accurate digital garments for apparel design as long as speed is not the
driving factor. Unlike most existing solutions for the apparel industry,
we want to embrace this category of techniques that prioritize accuracy.

Based on these observations, in this paper we describe how we have
set up a cloth simulation system by adopting an approach that focuses

on accuracy. However, an accurate but excruciatingly slow method is
not the answer either, for the simple reason that it is not practical nor, in
our case, commercially viable. We therefore leverage existing literature
and propose some novel ideas to significantly speed up our simulator
without compromising its accuracy, making it viable for the industry.
We comprehensively study a wide set of convergence and performance
features to assess their impact on computation cost and overall accuracy.
By shedding light into the relative value of each feature, we aim to
provide useful guidelines and informed advice to future practitioners
seeking to implement a robust, accurate and efficient cloth simulator.
The simulator has been proven since then with thousands of simulations
of customer-made garments with real-life constructions and digitized
fabrics.

2 RELATED WORK

Cloth simulation has been an active research area for several decades.
The study of cloth behavior is important for a wide range of fields,
including textile development, apparel design, visual effects and video
games. In this section, we first give an overview of the different simula-
tion techniques that have been proposed to model cloth behavior, which
can be categorized by their integration scheme. These are the back-
bone of cloth simulation in modern 3D CAD software for the apparel
industry. We then survey existing production-grade cloth simulation
packages, commercial or otherwise, making use of these simulation
techniques, while highlighting their specificities in terms of accuracy
and computation speed. We then focus on technical contributions that
seek to provide, akin to our work, an in-depth understanding of specific
cloth simulation engines with implementation guidelines and pitfalls to
avoid.

2.1 Integration Schemes
Various numerical simulation methods have been proposed to solve the
equations of motion governing the behavior of cloth. These methods
can be categorized according to the way they solve the underlying
system of equations, effectively acting as a trade-off between accuracy
and speed: global methods and local methods.

Global methods rely on one or several linear solves to timestep an
implicit (Backward Euler) discretization of the laws of motion. When
the equations are highly nonlinear, which is often the case in cloth
simulation with hyperelastic materials, Newton’s method [48] is ar-
guably the most accurate approach, properly handling the very high
material stiffness found in most fabrics. Newton’s method quadratic
convergence is offset by the high computational cost of each iteration,
which requires the computation of the energy’s Hessian. Keeping the
number of iterations low for both the linear solve (e.g., a Conjugate
Gradient solver) and the Newton step without impairing the fidelity
of the results is challenging, and we provide some guidelines for this
in § 5.1. Some approaches take a single Newton step [2], effectively
assembling and solving a linear system only once per time step and
resorting to backtracking mechanisms if the step did not converge, but
the cost of the iteration remains high. Recent methods re-formulate the
problem as an energy minimization [21], allowing to use larger time
steps. When fidelity can be sacrificed in favor of speed, several methods
avoid computing the full energy Hessian matrix by using precomputed
approximations and factorizations, effectively reducing the cost of set-
ting up and solving the linear system while still benefiting from a global
method. Some examples are Projective Dynamics [6], ADMM [50],
and the Quasi-Newton L-BFGS update [37], potentially achieving inter-
active simulation speeds for some limited scenarios. Other approaches
striving to increase speed while retaining fidelity include the multigrid
method of Xian et al. [73], currently limited to homogeneous materials
across the domain, and the subspace preconditioning approach of Li et
al. [35], which heavily relies on GPU computation.

While global methods are interesting for their accuracy, they strug-
gle to achieve interactive results for garments with even moderate mesh
resolutions. Without enough time to converge, visual artifacts and
instabilities quickly appear. This is when local methods become inter-
esting, since they do not require assembling and solving large linear
systems but rely on the fast initial convergence of the Gauss-Seidel

method [3]. The seminal work by Müller et al. [44], Position Based Dy-
namics (PBD), models the material behavior using quadratic constraint
formulations. The main shortcomings of PBD, namely the implicit
coupling between material stiffness and the number of iterations as
well as the size of the time step, is addressed in the follow up method
Extended PBD (XPBD) [39]. Other methods have also built upon PBD
to improve its convergence [46]. The stability and speed of these meth-
ods, together with their simplicity, have made them the go-to method
for real-time simulation. The price to pay is in overall accuracy; even
though XPBD is expected to converge to the true solution given enough
iterations, it fails to converge in some stiff scenarios [38, 55].

2.2 Cloth Simulation Software

There is a wide variety of cloth simulation software packages built on
top of global or local methods depending on specific needs. In the case
of the apparel industry, and particularly in 3D CAD for apparel design,
cloth simulation plays a central role in the early stages of garment
design. A 3D CAD provides different tools for the patternmaker to
draw, assemble and drape the garments in 3D, ideally delaying the need
to build a physical prototype to a much later stage in the design process.
Notable examples are Browzwear’s VStitcher [10], Clo [18] and Opti-
tex’s PDS 3D [49]. All three provide cloth simulation capabilities to
allow real-time interaction with the user and fast drapes for immediate
visual feedback. As we focus on garment fidelity rather than sheer
speed, in this paper we describe our cloth simulation engine which uses
a global integration scheme.

When the process is artist driven, which is often the case for dig-
ital content creation for marketing and sales (digital photography, e-
commerce), there are several generic 3D tools and simulation packages
from the visual effects industry that allow cloth simulation with a strong
emphasis on high visual quality rather than accuracy. Off-the-shelf cloth
simulation tools, such as Autodesk Maya’s nCloth [57] and SideFx’s
Houdini Vellum [54], overwhelmingly use local integration schemes,
and with good reason: since the process is artistic, disconnected from
real materials and focused on visuals, the fabric properties and garment
drapes are usually hand-tuned to look good and can therefore sacrifice
fidelity to a large extent.

Some industry-grade simulation engines reportedly use global
schemes for cloth, but these are often in-house tools from visual ef-
fects companies not available to third parties [28, 31, 60]. However,
the research teams behind them have published academic literature on
some of the internal mechanisms of their engines, providing insightful
guidelines, good practices and warnings against common pitfalls for
practitioners wanting to implement robust, accurate and efficient global
integration schemes. While these methods are not specific to cloth
simulation, and target the visual effects industry in general, they are
still valuable for the apparel industry. The most complete and thor-
ough example is Kim and Eberle’s course [28] about Pixar’s simulation
engine, Fizt2. The authors give an overview of the main algorithms
under the hood for the simulation of deformable bodies, including cloth.
Topics range from simulation performance to collision detection and
response, including techniques for reducing the computational cost
of the simulation while maintaining its accuracy, which is the main
purpose of our work. They also provide detailed instructions on how
to efficiently solve the equations of motion using a global integration
scheme. Another example is the multiphysics approach of Weta Dig-
ital’s Loki simulation engine [31], and particularly how it manages
many different interoperating simulation systems and discretizations
such as fluids, rigid bodies and deformable objects, all within a global
integration scheme. In this paper, we describe how we leverage some
of these insights in our own simulation engine.

Other commercial engines can be traced back to a seminal academic
paper describing an innovative simulation method. This is the case of
the multigrid cloth simulation work by Tamstorf et al. [60], later used
in Disney’s cloth simulation engine to achieve a one order of magnitude
speedup in computation times, with seamless integration in a global
solver. Nucleus, a unified solver based on soft constraints solved in an
interleaved manner, is extensively described by Stam [57] while being
the backbone of Autodesk Maya nCloth simulation. Similarly, Macklin

et al. [40] introduced a unified particle-based approach, built on top of
PBD, which would become NVidia Flex simulation toolkit. Unified
solvers are interesting because they allow the simulation of cloth, rods,
volumetric bodies, rigid bodies, and even fluids from a single common
building block (particles, for example) and using a single solver which,
unlike multiphysics approaches [31], greatly reduces the size and com-
plexity of the system. Unfortunately, they often use local integration
schemes, such as in both examples above. Han et al. [24] describe a
production environment for cloth simulation based on PBD and making
extensive use of the GPU for speeding up computations, in another
example of a local integration scheme used for cloth simulation in the
visual effects industry.

Finally, open-source projects are another way to learn about the
inner workings of cloth simulation engines. The industry-grade toolkits
Bullet [16] and Nvidia PhysX [15] have their source code available
for anyone to see, but these are local solvers appropriate for real time
interaction, not high fidelity. Open source global solvers can be found
in academia, such as the now aging but still widely used ARCSim [47]
adaptive cloth simulator, the Hobak [29] engine by Kim, which carried
over the key lessons learned while developing Pixar’s Fizt2 simulation
engine, or C-IPC [34], a state of the art global method heavily focused
on providing intersection-free collision guarantees.

3 INTEGRATOR OVERVIEW

Our main goal is to produce a garment’s final drape as fast as possi-
ble without compromising accuracy. To this end we start off with a
global method: the backbone of our simulator is a robust Backward
Euler-Newton integrator assisted with Line Search. Algorithm 1 sum-
marizes the main stages of the simulator. In the remainder of this paper,
we describe and evaluate different acceleration techniques that help
towards this objective. The focus of this work is exclusively on drape
simulations and many of the features we describe in this paper are
specifically tailored to that end, even though the simulator ultimately
integrates the equations of motion.

3.1 Backward Euler-Newton Integrator
Given Newton’s second law F(x,v) = Mv̇, v = ẋ, we can advance
the system state x0, v0 at time t to the state xs, vs at time t +h using
backward Euler discretization:

M(vs−v0) = hF(xs,vs)

xs = x0 +hvs

which, after substitution yields the nonlinear equation

f(vs) = M(vs−v0)−hF(x0 +hvs,vs). (1)

Given an initial guess vi (we always set it to v0), Newton’s method
finds f(vi+1) = 0 by iteratively refining the solution

vi+1 = vi−

(
∂ f
∂v

(vi)

)−1

f(vi) (2)

with

∂ f
∂v

= M−h2 ∂F
∂x
−h

∂F
∂v

. (3)

We substitute (1) and (3) into (2) and rearrange the terms to get(
M−h2 ∂Fi

∂x
−h

∂Fi

∂v

)
∆v = M(v0−vi)+hFi (4)

with Fi = F(x0 +hvi,vi) and ∆v = vi+1−vi. Newton’s method iter-
ates until the error rn = ∥f(vi+1)∥< τn for a given threshold τn or until
early stop (discussed in § 3.1.3). Note that the error in the step i+1 is
conveniently the norm of the right-hand side: ∥M(v0−vi+1)+hFi+1∥.
At convergence, we set vs = vi+1 and xs = x0 +hvs.

Algorithm 1 Overview of the simulator’s integration step. objs are the
simulation objects and A and b refer to the left- and right-hand sides of Equation
4. The sections corresponding to each feature appear after comment markers
(//).

1 initialParameterization(objs,τcg,τn,ω) // § 5.1, 5.3
2 precomputations(objs) // § 6.1, 6.4, 6.5
3 h← hmax
4 t← 0
5 while t < tsim do
6 initialRelaxation(t, h, objs) // § 5.2
7 c← detectCollisions(objs)
8 x0,v0← getState(objs)
9 vi← v0, xi← x0 + hv0

10 b← computeRhs(objs, c, xi, vi)
11 rn← ||b||
12 for in = 0 to In do
13 A← computeLhs(objs, c, xi, vi)
14 ∆v← linearSolve(A, b, τcg) // § 6.3, 6.2
15 fls← 1
16 diverged← true
17 for ils = 0 to Ils do
18 vls← vi + fls∆v, xls← x0 + hvls
19 b← computeRhs(objs, c, xls, vls)
20 if ||b|| < rn then
21 rn← ||b||
22 diverged← false
23 vi← vls, xi← xls
24 break
25 end
26 fls← 0.5 fls

27 end
28 if diverged then
29 break
30 end
31 if rn < τn then
32 t← t +h
33 setState(objs, xi, vi)
34 break
35 end
36 end
37 if checkEarlyStop(objs) then // § 5.4
38 break
39 end
40 updateTimestep(h, ω , diverged)
41 end

The left-hand side matrix of the system has to be at least positive
semidefinite to guarantee Newton’s method convergence. In practice,
we have seen that our simulator is robust to energies that do not guaran-
tee such matrices. This is mainly due to a time splitting scheme that
helps maintain the positive semidefiniteness of the system as we discuss
in § 3.1.3.

3.1.1 Conjugate Gradient
Our integrator uses a Preconditioned Conjugate Gradient (PCG) as the
iterative method for solving the linear system of equations (line 14 in
Algorithm 1).

Modified versions of the algorithm have been presented to efficiently
handle constrained particles in the context of cloth simulation such
as MPCG [2] and PPCG [60]. In our case, collisions are treated as
soft constraints instead of hard constraints, so we can use the Eigen
package [23] implementation of the PCG algorithm, which iterates
until rcg < τcg, with rcg =

|Ax−b|
|b| .

3.1.2 Line Search
Newton’s method converges rapidly towards the solution when the
current estimate is close enough to the solution. However, in some
non-linear settings the step of a Newton iteration could point in the right

direction but miss the step length [48]. Adding a line search scheme
has been shown to increase robustness while adding a fraction of the
cost to each Newton iteration [21, 26, 41].

We implement a backtracking line search approach similar to [26],
consecutively halving the Newton step length until rn decreases (lines
17-27 in Algorithm 1).

3.1.3 Time Splitting
Despite the use of a line search strategy, a dynamic simulation can reach
challenging states (collision-rich scenarios, fast-moving fine wrinkles,
etc.) that prevent a fast convergence of Newton’s method, requiring
many iterations to solve. The stiffness and damping matrices can even
become non-positive definite in some states, leading to non-positive
definite system matrix and to a divergence of the iterative method.

Analyzing the terms of the system matrix in (4), a decrease in h
reduces the contribution of the stiffness (∂Fi

∂x) and damping (∂Fi
∂v) matri-

ces. As a result, it increases the dominance of the mass matrix M which,
in our case, is lumped and therefore constant and positive definite, thus
helping maintain the overall health of the system matrix. Adaptive
time-stepping strategies can benefit from this property [2].

We also exploit this trait and implement a time-splitting scheme to
deal with these challenging states (line 40 in Algorithm 1). We check if
the step does not succeed after a fixed number of Newton iterations or
if the residual increases after any Newton iteration. When any of these
checks is triggered, the current simulation step aborts, resetting the
state of the simulation objects to their state before the step and setting
h = ωh with the time-splitting factor 0 < ω < 1 to integrate again.

Challenging configurations are typically transient, so the splitting
is reversed by setting h = ω−1h after several consecutive successful
simulation steps while h < hmax. We set hmax = 1ms, as we explain in
§ 3.3.

3.2 Energies
Cloth objects are discretized as Delaunay triangle meshes and gov-
erned by elastic and damping energies. We use an anisotropic Saint
Venant-Kirchoff (StVK) model [67] and a discrete hinge-based bending
model [8, 22, 59] to capture the anisotropic stretch, shear and bending
properties of cloth. We note that these models neglect some known
behaviors of cloth, such as plastic deformation due to internal fric-
tion [43]. However, we have validated that after properly fitting the
model parameters, they faithfully replicate the draping behavior of the
different materials present in the garment (Figure 2). We use dissipation
potentials [58] as damping energies, which we further discuss in § 5.3.
Garment trims such as buttons are simulated as rigid bodies with spring
attachments to the fabric.

We use standard point repulsion with quadratic energy penalty po-
tentials [42] together with Coulomb friction [75] for all the collisions
detected among objects in the scene (§ 3.3). We use a stiffness of
102N ·m for all collisions.

Parallelization is easy to apply among energy stencils, with the caveat
that synchronization is necessary because the degrees of freedom of
different stencils can partially overlap. Our baseline uses this approach,
and we develop this further in § 6.5.

3.3 Collision Detection
The interactions between objects play a major role when simulating
complex scenes. Properly handling collision detection and collision
resolution is therefore paramount.

We use discrete collision detection for interactions between all dy-
namic and static objects in the scene. We rely on acceleration structures
for efficiently querying and discovering contacts in each step: we use
distance fields [45] for static objects such as avatars and garment trims,
and use bounding volume hierarchies to efficiently perform vertex-
triangle and edge-edge proximity queries among cloth objects.

Implementing a robust collision detection and resolution system,
particularly among codimensional objects such as cloth, is known to be
(and remains) a very challenging problem. This has spanned research
on the use of continuous collision detection (CCD) to prevent invalid
configurations in every step [7, 25, 33, 62, 63]. Implementing a robust

Hanging Validation Scene

Stretch Validation Scene

Fig. 2: Two validation scenes used to visually assess, in a controlled en-
vironment, the accuracy of a digital fabric compared to a real photograph.
On the top pair, fabric hangs from two points and drapes under gravity.
On the bottom pair, fabric is also stretched from its bottom right corner to
produce buckling interactions.

0s 0.5s 1s 1.5s

Fig. 3: Snapshots of the progression of a Synthetic Scene test for the
(Fine Stiff) set of parameters τn =1e-3, τcg = 1e-2, and ω = 0.75.

CCD system, however, can be particularly challenging [61, 68, 70]. If
not done carefully, it can easily become the bottleneck of the simulator.
The recent IPC method [33, 34] offers extremely robust handling of
collisions, but these guarantees come at the expense of performance as
we will show in section § 7.2. In addition, in a production environment
where there is no absolute control over the input to the simulator,
additional systems such as untangling strategies tightly coupled with
the collision system are required [28].

Discrete collision detection is much simpler to implement and faster
to compute but does not offer theoretical guarantees and may not be
suitable for all types of scenes. However, we have found that in the
context of drape simulations, the use of discrete collision detection
together with setting hmax = 1ms to avoid large displacements and an
initial relaxation (§ 5.2) to better condition the input, leads to very
robust detection in practice. Other approaches in this direction are also
proposed in the literature, such as limiting the maximum per-vertex
displacement per step to prevent missing collisions [56], but we have
found our approach to work well in all reasonable scenarios. In section
§ 7.2 we compare our approach with the C-IPC method in draping
scenarios, showing good accuracy in the treatment of collisions, while
providing a much better performance.

4 EXPERIMENTAL SETUP

In the remainder of the paper, we focus on different features to acceler-
ate drape computation without sacrificing quality. In this section we
describe the experimental setup used to evaluate and discuss each of
these features.

4.1 Methodology
We divide the set of features into two categories: convergence features
(§ 5) and performance features (§ 6). Convergence features achieve
drape speedups by changing the behavior of the system. Each feature is
tailor-made for the specific problem of simulating drapes. On the other

hand, performance features optimize the algorithms used to solve the
system. They do not require specific knowledge on physically based
cloth simulation and are therefore plug-and-play accelerations. This
separation allows us to reduce the mutual influence across features to
better study them in isolation. While all features are independent (each
can be turned on or off at will), there are some interesting synergies
that will be discussed when appropriate.

For each feature, we run a set of simulations with it turned on, which
are compared against baseline simulations to understand the qualitative
and quantitative effect of its activation. Unless stated otherwise, the
simulations run until 3s of simulation time have elapsed. We repeat
each test 3 times and report the averaged results. We store all the appro-
priate simulation data and analyze it after having run all simulations.
Data sampling and saving costs are excluded from all reported time
measurements.

4.2 Apparatus
We test each feature on a set of 10 production garments and use syn-
thetics scenes for range sweeps during parameter tuning to reduce
computations. All the experiments are run on a system with an Intel
Core i7-7700K CPU with 64GB of memory.

4.2.1 Full Garments
To evaluate the effect of each feature, we selected a set of 10 production
garments with a wide range of shapes, styles and seams, ranging from
a plain t-shirt to a multilayer, buttoned up outfit. As in most CADs
for the apparel industry, the garments were assembled using a real-
time, interactive and low-resolution simulator. In particular, we used a
Position-Based Dynamics solver. Figures 1 and 4 show all 10 garments.

The many fabrics making up these garments were digitized in a
laboratory using specific fabric capture equipment, which includes a
Uniaxial Stretch Test device for stretch parameters and a Pearloop
Test device for bending parameters. The captured data is then used
to derive mechanical parameters in weft, warp and bias directions for
stretch and bending via the numerical optimization of test simulations.
The resulting materials correctly reflect the mechanical behavior of the
real fabrics, as shown in Figure 2 for two fabrics. As such, they are
usually very stiff in stretch and very compliant in bending, a challenging
situation for any accurate simulator. Appendix B in the supplementary
material shows the mechanical parameters of each fabric used in these
garments.

4.2.2 Synthetic Scenes
Some features, such as in § 5.1, require many tests to be able to draw
any conclusion. To this end, we have devised a synthetic scene that is
faster to simulate than the 10 production garments while triggering a
larger range of deformation modes.

The synthetic scene consists of a flat, squared 1m2 piece of fabric
clamped at two opposing sides. After 0.5s of simulation, one of the
clamped sides rotates during 1s until reaching 0.75π degrees, producing
stretching, bending and self-collision forces. The simulation keeps
running until it reaches 3s. Some snapshots of this process are shown
in Figure 3. We use two possible discretizations (a coarse triangulation
with 30K DoFs and a fine triangulation with 300K DoFs) and two sets of
materials (a stiff woven fabric and an elastic knitted fabric). Appendix
B in the supplementary material shows the mechanical parameters of
each fabric used in these scenes.

5 CONVERGENCE FEATURES

The first set of features that we evaluate share the common property
of significantly affecting the dynamics and convergence of the system,
such as choosing the error thresholds of the integrator or deciding when
draping simulations should stop. In this section we describe the set of
features and study their effect.

5.1 Solver Parameters
Our solver, like most, has a set of parameters that control its numer-
ical behavior. Two major parameters are the τn and τcg thresholds
respectively required by the Newton (§ 3.1) and the Conjugate Gradient

5) Basic T-Shirt 6) Cardigan 7) Sweater 8) Autumn Outfit 9) Plain Dress 10) Hoodie
101K DoFs 86K DoFs 114K DoFs 273K DoFs 127K DoFs 170K DoFs

Fig. 4: Six additional production garments used throughout this paper, showing a range of shapes, sizes and styles, including tailoring features such
as buttons, overlapping layers, pockets and facings.

(§ 3.1.1) methods to define their stop criteria. Values for these thresh-
olds are typically only hinted at in the literature for arbitrary setups or
not reported at all and left for the user to guess. However, they can have
a significant impact on the performance and accuracy of the solver. We
therefore study the quantitative and qualitative implications of choosing
different τn and τcg values, and we show which values best fit the goal
of obtaining a drape.

Another relevant parameter is the time-splitting factor ω described in
§ 3.1.3. The ideal (but difficult to reach) state would be to always have
h = h∗, being h∗ the highest value that allows successful integration
steps. A low ω can rapidly reach a successful h value but stay far from
h∗, therefore advancing at sub-optimal speed. A high ω can reach a
value closer to h∗ but may require multiple splitting operations, wasting
time on retries when decreasing h and on small incremental changes
when increasing h. We therefore also explore different choices of ω to
understand their effect on overall performance.

There are other parameters that we do not explore in this work.
In particular, we set hmax = 1ms to increase the robustness of our
discrete collision detection system as explained in § 3.1.3. We also
set a maximum of 500 iterations for the Conjugate Gradient solver, as
we sometimes observe asymptotically decreasing residuals that lead to
costly linear solves. With this maximum we prevent them and let the
rest of the robustness strategies take over. Similarly, we fix the number
of maximum line search iterations Ils, the number of maximum Newton
iterations In and the number of consecutive successful steps Is before
increasing h, all of which we set to 5 as we have found them to be of
little influence in our context as long as they remain small. We note,
however, that they could become relevant under other circumstances,
for example, if larger time steps were to be taken [21].

5.1.1 Broad Analysis

We start with a wide sweep of τn from 10−7 to 10−1 to later narrow
the search to the relevant range. We also test ω ∈ [0.25,0.5,0.75]
and fix τcg = 10−2. We use the synthetic scenes, as they exhibit the
most significant effects found in production (stretch, wrinkling and
collisions) while also (sparsely) covering typical materials and triangle
counts found in production garments. We later confirm that they serve
as a good proxy for production scenes.

Since our simulation includes Coulomb friction, slightly different
equilibrium drapes are expected for different parameter configurations.
We analyze the resulting geometry to identify large differences and/or
visual artifacts in the final drapes. We measure the average vertex
distance of the resulting drapes against the τn = 10−7,ω = 0.5 case.
Table 1 shows the results after running simulations for all the combina-
tions, reporting total computation time and average vertex distance.

The experiments show that τn with values between 10−3 and 10−1

perform significantly better than in the 10−7 to 10−4 bracket, with a
substantial performance improvement up to 6x. For the less restrictive
τn range, the error in drape similarity increases but remains bounded
within an maximum average vertex distance of 12.23mm. The results
also reflect that the choice of ω is not relevant when the time-splitting
approach does not trigger often, but when it does ω = 0.75 leads to a
better performance.

τn = 10−3 τn = 10−7 τn = 10−3

τcg = 10−2 τcg = 10−2 τcg = 10−1

(convergent) (ground truth) (divergent)

Fig. 5: Three drapes of the same garment (top row) and the Fine & Soft
synthetic scene (bottom row). The ground truth (τcg = 10−3) is shown in
the center column. On the left, the scenes are successfully simulated with
(τcg = 10−2), reaching convergence. On the right, the scenes simulated
with (τcg = 10−1), diverge due to energy injections.

Note: exiting the Newton method too early is known to introduce
numerical damping [65], and we are likely experiencing varying degrees
of this effect when changing τn. However, since our goal is the final
drape, we can accommodate (and even welcome) some additional
damping as long as the drape remains accurate and the performance
gain out-weights the slower dynamics, improving wall-clock simulation
times. Conclusions would very likely be different if the goal involved
animation or accurate trajectories, where artificial damping is often
undesirable.

5.1.2 Narrow Analysis

Based on the previous results, we set ω = 0.75 and do a new evaluation
of τn ranging from 10−5 to 10−1 and add τcg ∈ [10−3,10−2,10−1] to
the analysis. We use [τn = 10−7, τcg = 10−2, ω = 0.75] as ground
truth, as we have it from the previous analysis. We perform this new
evaluation on both production and synthetic scenes. The results are
summarized in Table 2 for the synthetic scenes.

Synthetic scenes: We observe only marginal performance gains from
using τn values less restrictive than 10−3. Closer inspection shows that
there is barely any h adjustment in the τn ∈ [10−3,10−2,10−1] range
for these scenes, and multiple Newton iterations are required only in
the more challenging collision configurations during the torsion. A less
restrictive τcg does lead to a performance gain due to lower number
of CG iterations. However, for τcg = 10−1 we start to see divergent
behavior in the form of energy injections and penetrations in both the
soft coarse and soft fine cases, as reflected by the corresponding vertex
distances of Table 2, and as shown in Figure 5 (bottom row).

Coarse & Soft Coarse & Stiff Fine & Soft Fine & Stiff

τn

ω
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

10−7 835 824 871 1155 791 759 14144 11176 11181 32203 19892 21003
10−6 621 608 607 759 564 551 6958 6916 6803 12054 11832 12130
10−5 499 474 474 354 355 357 5273 5421 5361 11538 8069 7758
10−4 366 367 371 335 335 340 4099 4109 4134 11382 7616 5465
10−3 306 308 309 324 324 327 3548 3564 3590 5295 5242 5322
10−2 283 284 286 305 305 310 3312 3349 3347 4898 4987 5003

C
om

p.
Ti

m
e

(s
)

10−1 282 283 287 305 306 312 3301 3325 3370 4897 4960 4971
10−7 0.21 0.0 0.09 0.12 0.0 0.02 3.41 0.0 1.12 0.79 0.0 1.05
10−6 2.05 2.38 2.49 0.12 0.01 0.06 3.77 3.79 3.76 2.39 2.4 2.41
10−5 2.83 2.82 3.24 0.16 0.16 0.16 4.17 4.42 4.39 2.41 1.66 1.17
10−4 3.77 3.59 4.01 0.25 0.23 0.22 4.54 5.26 5.64 2.5 5.55 4.45
10−3 3.33 4.15 5.51 0.29 0.26 0.3 9.83 10.73 10.51 4.37 4.42 4.48
10−2 4.49 4.63 3.75 0.81 0.84 0.82 12.23 10.76 11.6 1.07 1.07 1.07

M
es

h
D

is
ta

nc
e

(m
m

)

10−1 2.72 3.27 4.31 0.81 0.84 0.82 11.07 12.11 11.64 1.07 1.07 1.07

Table 1: Results for the broad analysis of solver parameters, varying the Newton threshold τn between 10−7 and 10−1 and the time splitting factor ω

between 0.25 and 0.75. Overall, a less restrictive τn gives the best results without significant accuracy loss, and the choice of ω is relevant only when
significant time splitting occurs.

Coarse & Soft Coarse & Stiff Fine & Soft Fine & Stiff

τn

τcg 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−5 459 449 541 370 341 377 5514 5069 6852 8726 7409 6109
10−4 362 357 379 367 326 307 4256 3961 4142 6406 5208 4216
10−3 315 314 315 336 340 308 3752 3594 3598 6390 5406 4416
10−2 306 305 307 337 326 308 3655 3520 3356 6437 5422 4222C

om
p.

Ti
m

e
(s

)

10−1 305 305 297 336 328 316 3663 3529 3404 6430 5356 4270
10−5 1.75 3.17 5.5 0.3 0.3 0.32 4.29 4.73 7.23 1.28 0.91 0.9
10−4 1.54 3.5 12.21 0.3 0.3 0.38 4.03 4.53 11.03 1.83 4.34 8.76
10−3 3.23 3.85 14.1 0.31 0.25 0.88 4.01 9.96 37.94 4.66 4.49 9.5
10−2 3.88 2.76 32.61 0.31 0.29 0.93 3.8 10.85 48.15 6.6 1.07 5.83M

es
h

D
is

ta
nc

e
(m

m
)

10−1 3.83 4.33 30.78 0.31 0.29 0.93 3.71 12.37 59.03 6.6 1.07 5.86

Table 2: Results for the narrow analysis of solver parameters, varying the Newton threshold τn between 10−5 and 10−1 and the Conjugate Gradient
threshold τcg between 10−3 and 10−1. Overall, a less restrictive τn gives the best results without a significant loss in accuracy. τcg also decreases
computation times but at the cost of a significant loss in accuracy in Soft cases, which is exacerbated for the less restrictive values of τn.

Production scenes: Similar conclusions can be drawn for the pro-
duction scenes. The τn variation in the [10−3,10−1] range has a very
limited impact, since all the simulations do a single Newton iteration
per step and no time-splitting. However, it performs faster than the
τn = 10−5 ground truth while reaching a similar drape. As with the
synthetic scenes, τcg = 10−1 leads to faster computation, but visual
inspection shows energy injections for some of the scenes which are
not present for τcg = 10−2, as shown in Figure 5 (top row).

In light of this analysis, we select τn = 10−3, τcg = 10−2, ω = 0.75
and use them for the rest of the experiments in this work. Naturally,
this process would need to be repeated and new values would need to
be selected if any of the fixed parameters (e.g., hmax) were to change
in the future, given that all the solver parameters are coupled to some
extent. However, these experiments show that fine-tuning integrator
parameters can provide a significant performance speedup with little
deviation from the ground truth. In addition, using a reduced set of
synthetic scenes that sample the production space serves well to help
in the search for optimal values.

5.2 Initial Relaxation
The first few time steps of a simulation are particularly sensitive to the
initial conditions of the problem. A badly conditioned input mesh can
introduce a considerable amount of error from which the simulation
might not recover. This can happen when the input mesh comes, for

example, from an artistic pipeline that does not consider real fabric
properties, or from an interactive design tool that gives an initial approx-
imation of the assembled garment [36]. The input mesh can contain
a very high potential elastic energy that, together with the typically
stiff stretching behavior of fabrics, can lead to challenging high-speed,
contact-rich dynamics, compromising the entire simulation.

This has led researchers to devise different relaxation schemes, such
as reducing the high initial potential energies [76] or reaching a feasible
initial state [77]. We address this issue by setting an initial time step
ht = htmax/16 and defining a relaxation window spanning the first 0.1s
of simulation. During this window, velocities are set to 0 after each
integration step and fabric stiffness values are multiplied by a factor
linearly interpolated in the range [10−2,1] over the relaxation window
duration.

While this strategy is simple, we have found it to work well in
practice for all scenes, preventing otherwise incorrect simulations such
as the one shown in Figure 6 after a sloppy pinching operation. For
scenes with a good initial state, such as the 10 production scenes,
the additional computation time induced by the relaxation strategy is
negligible. We have observed that, even in these cases, our early stop
strategy (described in § 5.4) can sometimes benefit from this reduced
initial energy state.

Fig. 6: A badly initialized garment (left) leads to a very high potential
energy state at the start of the simulation. Attempting a regular simulation
of this garment (center) leads to an undesirable configuration, while the
use of our initial relaxation approach (right) successfully reaches the
expected drape.

5.3 Near-Critical Damping
Real world objects dissipate kinetic energy due to multiple reasons.
While the ubiquitous Rayleigh damping [51] is still used in many
engineering contexts, different damping models have been proposed to
simulate these dissipative processes in controlled ways [2, 9, 58, 74].

To dissipate general system velocity, we add a simple air drag force
opposing a vertex with mass mi and velocity vi:

Fd,i(vi) =−αmivi (5)

with damping coefficient α .
To dissipate specific potential energies, we follow Sánchez-Banderas

model [58], defining dissipation potentials for our stretch and bending
energies based on their strain rate ε̇ = ∇xεT v. For stretch, Sánchez-
Banderas provides the expressions of the dissipative forces and Hes-
sians of the Saint Venant-Kirchoff energy. For bending, we derived
the expressions following the same approach. We refer the reader to
Appendix A of the supplementary material for more details.

It is hard to come by generic damping parameters that would work
across the board in all scenarios and for all fabrics. Damping parameters
typically require careful tuning to match a desired behavior [74]. In
our case, the three parameters α , βs and βb control the air drag, stretch
and bending damping forces respectively. Since we are interested in
final drapes, we set our coefficients pushing past the realistic dynamic
behavior, and rather approaching a near critically damped system to
shorten the simulation time required to reach equilibrium. We have
empirically evaluated which values draw near this behavior for the
scales and material ranges that we typically find in production scenes,
reaching α = 5s−1, βs = 10−2 and βb = 10−1.

Figure 7 shows a comparison with and without these damping forces.
Their addition, as expected, increases the overall simulation cost as they
slightly worsen the conditioning of the system matrix as well as require
additional force and Hessian accumulations. However, this is largely
offset by a significant reduction in kinetic energy, allowing the system
to converge to equilibrium faster. This particularly benefits our early
stop criterion described in the following section which, taken together,
significantly reduces computation times.

5.4 Early Stop Criterion
Our simulations are expected to run until reaching (near) equilibrium.
Simply setting a generous simulation time would suffice to reach this
equilibrium at some point, but at the expense of pointless, wasted
computation cycles. Instead, we define a criterion to trigger an early
stop when reaching a target equilibrium state.

One possible early stop criterion could be setting a threshold to the
total system kinetic energy. However, this approach has two issues.
First, the total kinetic energy of a system with many degrees of freedom
does not allow to discern when the whole system is near rest and when
most of the system is at rest except for a small region still undergoing
dynamics, making it virtually impossible to find a threshold that satisfies
all cases. Second, the system can go through transient low kinetic states

Fig. 7: Damping effect on a garment’s kinetic energy. Without damping,
kinetic energy remains high and the simulation does not reach the early
stop threshold. The visual difference between the early stop timestamp
(bottom center) and 0.5s later (bottom right) is negligible, validating the
decision of stopping early.

to then speed up again and liberate more potential energy, similar to a
swinging pendulum.

We address these two problems by 1) evaluating only the highest
99th percentile of per-node kinetic energy against a threshold that we
set as 10−8 and 2) ensuring that the threshold is met throughout a
window of 0.1s of simulation.

Figure 7 (bottom) shows an example of early exit (bottom center),
comparing the geometry at that point to the geometry obtained after
an additional 0.5s of simulation, showing how all the draping details
have settled and only slow, low frequency differences appear. The same
scene without damping energies also reduces kinetic energy (due to the
numerical damping introduced by Implicit Euler) but stays far from a
low kinetic energy state and would require much more simulation time
to reach the stop criterion.

6 PERFORMANCE FEATURES

In the previous section, we proposed a combination of parameter tuning
and specific features that significantly reduced the overall computa-
tion time by efficiently guiding the simulation dynamics towards a
converged state. In this section, we focus on a set of acceleration tech-
niques that do not aim to influence the simulation dynamics nor the final
drape beyond minor numerical differences, but to run computations
significantly faster. These are software optimization techniques that do
not require specialized knowledge on physics or cloth simulation and
rely on the efficient implementation of numerical computation code.

6.1 Dual System Matrix
Each time the Newton integrator iterates, which is at least once per time
step, the stiffness and damping matrices change and the entire system
matrix (the left-hand side of Equation 4) needs to be rebuilt. Given the
large number of degrees of freedom in the simulation, these matrices
are too large to be dense and must be stored in a sparse format such
as Compressed Sparse Row (CSR). Assembling a sparse matrix is a
time consuming process and can account for a significant portion of the
solver’s computational budget.

Following prior work [12, 28], we note that the garment topology
is constant throughout the simulation. With the notable exception of
collisions, all energies of § 3.2 have static stencils. Therefore, we cast
the system matrix into a sum of two matrices: one with static topol-
ogy, which contains all static stencil energies, and one with dynamic
topology which contains collision soft constraints.

Garment Reassembled
Matrix (s)

Dual Matrix (s) Speedup

1) 12588 5196 2.42
2) 4442 864 5.14
3) 7414 1714 4.33
4) 9338 2503 3.73
5) 5335 1080 4.94
6) 5101 1150 4.44
7) 6184 1419 4.36
8) 18682 4460 4.19
9) 6902 1712 4.03
10) 9106 2113 4.31

Table 3: Computation times for simulations using a system matrix re-
assembled at each iteration and the Dual Matrix approach. The latter is
much faster to compute, with speedups between 2.42x and 5.14x.

The matrix with static topology can be assembled only once and
its values updated at each iteration, thus avoiding expensive matrix
assembly operations. The dynamic matrix is reassembled at each
iteration, but since it only contains entries related to collisions, it is
much sparser and comparatively much faster to assemble than its static
counterpart. Since we use Conjugate Gradient to solve Equation 4,
we replace the single matrix-vector product per CG iteration with the
sum of the two matrix-vector products corresponding to the static and
dynamic matrices. The small overhead incurred by an additional, albeit
small, matrix-vector product is largely offset by the computational
savings of not having to assemble a large sparse matrix, as shown
below.

To further reduce the density of the dynamic topology matrix, we
only use it for off-diagonal entries. Entries in the 3x3 diagonal are
guaranteed to exist in the static topology matrix, and we therefore
accumulate them there. Similarly, mass entries are exclusively on the
3x3 diagonal and can therefore be accumulated into the static topology
matrix.

Due to the compact nature of compressed sparse matrix formats,
directly accessing the elements of the static topology matrix to update
them is not cheap. Each direct access requires a search in linear time
within an array that can have hundreds of entries. Again, since the
topology is fixed, the mapping between energy stencil and sparse matrix
entry is constant and can be pre-computed. We use this map to update
the matrix entry in constant time. In addition, since each simulation
node corresponds to 3 DoFs, we can store, access and update 3x3 blocks
of entries instead of individual entries, which reduces the storage size
of the stencil-to-matrix map and makes reads and writes more efficient.

Table 3 shows the computational cost of the dual matrix approach for
the set of production garments, compared to reassembling the system
matrix at each iteration, leading to very significant speedups ranging
from 2.42x to 5.14x.

6.2 Single vs Double Precision

There is a clear trade-off between single and double precision data
types. Using single precision (32 bits) allows for a more compact
representation of floating-point numbers than double precision (64
bits). A smaller memory footprint results in a more efficient use of
the memory, from transfer to caching. Particularly, modern compilers
and off-the-shelf computation toolkits [23] increasingly use SIMD
vectorization as an efficient low-level optimization technique to achieve
significant speedups. Using single precision one can do twice as many
floating-point operations in SIMD compared to double precision.

On the other hand, double precision types naturally have a much
higher representation space regarding floating point numbers. Single
precision types can quickly accumulate round-off errors in their least
significant bits if multiple operations are involved. This is relevant
for some energies such as bending, whose true-to-life stiffness values
are extremely small, resulting in computations which struggle if the
underlying data type does not have enough precision.

Garment Single
Precision (s)

Mixed
Precision (s)

Double
Precision (s)

1) 4055 4448 5196
2) 760 825 864
3) 1272 1499 1714
4) 2003 2074 2503
5) 958 970 1080
6) 1002 1068 1150
7) 1277 1298 1419
8) 3715 3942 4460
9) 1404 1439 1712
10) 1781 1848 2113

Table 4: Computation times for simulations using different numerical
precision types. The mixed method achieves the best balance between
precision and speed.

doubles floats mixed

Fig. 8: Bottom part of the Autumn Outfit (8) after 3s of simulation with
the three different precision modes. Note how the floats version shows
noisy artifacts in the skirt region.

We explored the use of single precision, double precision, and a mix
of both (as suggested by Kim and Eberle [28]) in terms of computation
time. The mixed approach uses double precision when computing
energy derivatives but single precision when solving the linear system
from Equation 4. The results are shown in Table 4. As expected, single
precision computations are faster for all garments. This is especially
true during the linear solve step, since we use an off-the-shelf CG
algorithm built with SIMD vectorization. However, when looking at
the converged drapes of some garments we can clearly notice that the
garment surface is noisy, as shown in Figure 8): we pay the price for the
the lack of precision, and the results are of course unacceptable. The
mixed approach seems to be the right compromise, as already hinted
by Kim and Eberle. Computation times are close to the ones achieved
with single precision, again thanks to the lesser memory footprint and
the use of SIMD during the CG solve, but simulations do not suffer
from a lack of precision and converge to valid states (Figure 8, right).

6.3 Preconditioning
Iterative methods for solving linear systems (such as Conjugate Gra-
dient) usually benefit from system matrix preconditioning. Different
preconditioners leverage different system matrix properties and provide
different trade-offs between preconditioning quality and time required
to compute the preconditioner itself [4, 71]. In practice, the gain in
linear solve computation time must significantly outweigh the time
required to apply the preconditioner.

Kim and Eberle [28] evaluated some of these preconditioners in
a production environment and for a problem similar to ours and ob-
served that a 3-Block Jacobi preconditioner consistently offers the
best performance. We have tested this preconditioner, together with
the Diagonal and the Incomplete Cholesky preconditioners, with our
production scenes. The results, summarized in Figure 9, show that,
while increasingly complex preconditioners can improve further the
condition of the matrix and reduce the number of CG iterations, the
performance gain is countered by the time required to apply the precon-
ditioner itself. This is particularly evident for the Incomplete Cholesky
preconditioner, which can reduce the average number of CG iterations

Fig. 9: Computation time (bars, left axis) and Conjugate Gradient mean
iterations per time step (dots, right axis) using three different precondition-
ers and no preconditioner at all. Overall, 3-Block Jacobi offers the best
speeds with an average 1.12x speedup, and Incomplete Cholesky the
lesser number of Mean CG Iterations with an average 6.92x reduction.

by an impressive 83% w.r.t. the non-preconditioned case but results
in an average 2.4x increase in computation time. The best performing
preconditioner, aligning with the findings of Kim and Eberle, is the
3-Block Jacobi preconditioner, with an average speedup of 1.12x w.r.t
the non-preconditioned case. We therefore use this preconditioner from
this point on.

6.4 Degrees of Freedom Reordering

The cost of computing operations is, in general, sensitive to how data
is laid out in memory. The Conjugate Gradient solve, and particularly
its matrix-vector product, performs intensive computations that require
many memory accesses to fetch both the values of the sparse matrix
and the values of the dense vector. Data locality is known to increase
the performance of this operation [53] for large enough systems where
cache misses become an issue [64]. Since energy stencils represent
mutual interactions between a closed set of DoFs, we can optimize for
memory locality based on the stencil valence of each DoF. To this end,
we cast the static topology stencils into an undirected graph where DoFs
are graph nodes, and stencils are graph edges, effectively encoding the
adjacency matrix of the DoFs. We then use existing algorithms that
reduce the bandwidth of the graph, therefore optimizing the locality of
the DoFs. In particular, and as suggested by Kim and Eberle [28], the
Reverse Cuthill-mcKee is a fast and efficient graph bandwidth algorithm
widely available in off-the-shelf graph processing libraries. We build
the graph and run the algorithm once, during initialization. We obtain
a permutation matrix that encodes the new DoF ordering, which we
apply throughout our integrator. Figure 10 shows the typical sparsity
pattern before and after the reordering, significantly reducing the matrix
bandwidth [17].

Table 5 shows the computation times of the CG step, as well as the
system matrix bandwidth, with and without DoF reordering. Interest-
ingly, the impact is marginal in most cases, leading to CG computation
speedups up to 1.15x in the best case, barely affecting the overall solver
performance, as the linear system solve stages add up to ∼10% of the
total time (Figure 11).

It is also worth noting that aside from improved memory access,
reordering can also increase the effectiveness of some preconditioning
strategies [53]. There is no gain in our case since the 3-Block Jacobi
already operates on a dense 3-Block diagonal due to the 3D geometry
of our simulations. However, it can become significant for problems of
a different nature or a different choice of preconditioner.

Garment Base
(ms)

Reord.
(ms)

CG
Speedup

Base BW Reord.
BW

1) 264 251 1.05 38717 643
2) 22 23 0.98 27906 738
3) 87 84 1.03 46457 652
4) 124 125 1.00 30893 673
5) 40 38 1.03 33365 731
6) 36 35 1.03 28363 496
7) 65 56 1.15 38069 676
8) 122 122 1.00 39270 580
9) 124 121 1.02 41546 563
10) 62 63 0.98 45160 1202

Table 5: Experimental results of the reordering of DoFs, showing the
average cost of the CG step (in ms) with and without DoF reordering,
the resulting speedup in the CG solve and the system matrix bandwidth
(BW) with and without reordering.

before after

Fig. 10: Sparsity pattern of the system matrix of a garment, particularly
coarse (1030 DoFs) for visualization purposes. Left: Sparsity pattern
before reordering, with a matrix bandwidth of 380. Right: Sparsity pattern
after reordering, with a matrix bandwidth of 59.

6.5 Stencil Coloring
Given the large number of energy stencils, computing energy derivatives
in parallel is a natural way to achieve a significant speedup. For each
force (or Hessian) computation, energy stencils can be distributed
among threads, and each thread works through its assigned set of
stencils. Each thread then accumulates the resulting forces (or Hessians)
at a memory location corresponding to each degree of freedom involved
in the stencil.

While this approach is simple to implement, it can lead to race condi-
tions if two threads want to write on the memory location of a degree of
freedom present in both stencils. In the case of Hessian computations
and the dual system matrix from § 6.1, that memory location would be
a 3x3 block of the static topology matrix. A straightforward solution is
to use synchronization mechanisms, such as atomic operations, which
guarantee that a given memory location is exclusive to one thread while
the memory is being accessed, thus preventing concurrent updates.
While this approach still leads to significant speedups, explicit syn-
chronization mechanisms are costly due to the added overhead and the
potential bottlenecks that, at worse, force threads to idle while waiting
for their turn to access the memory.

Several strategies have been proposed to avoid explicit synchro-
nization, such as a two-pass parallel accumulation approach [28] or
stencil grouping based on graph coloring [19, 20]. We follow this latter
approach and implement a stencil coloring mechanism that splits the
stencils into groups so that the stencils in each group do not share any
degrees of freedom. The stencils in each group are processed in parallel,
while the groups themselves are processed sequentially.

We need to generate the groups only once, during initialization.
For this, we cast the stencils and their degrees of freedom into an
undirected graph, where the stencils are the nodes, and the degrees of
freedom are the edges. We can then use a graph coloring algorithm to
separate stencils into non-overlapping groups. Since our coloring is
only computed once at the beginning of the simulation, coloring speed
is not a constraint. We therefore use the algorithm by Coleman and

Garment Synchronization
(s)

Stencil
Coloring (s)

Speedup

1) 3431 3113 1.10
2) 709 628 1.13
3) 1236 1112 1.11
4) 1606 1493 1.08
5) 848 759 1.12
6) 777 669 1.16
7) 1057 917 1.15
8) 3169 2874 1.10
9) 1239 1149 1.08
10) 1454 1342 1.08

Table 6: Computation times for simulations using explicit synchronization
for energy and Hessian accumulation, and using coloring instead, show-
ing an average speedup of 1.11x for the latter.

Fig. 11: Pie chart showing the relative time spent in each stage of the
simulator. Static System Setup (structure initialization, energy accumula-
tion, etc) and Collision Detection account for 75% of the total simulation
time.

Moré [14] as it is readily available in off-the-shelf graph processing
libraries and favors low color count rather than coloring speed. We
refer the reader to the work by Fratarcangeli et al. [20] for an analysis
of different heuristic coloring approaches when coloring speed is a
constraint.

As a result, each stencil is labeled with a color index, and all stencils
with the same index are guaranteed to have independent degrees of free-
dom and can therefore accumulate all force and Hessian contributions
directly. Table 6 shows the acceleration introduced using stencil color-
ing compared to using synchronization via atomic operations for the
accumulation of Hessian contributions and a two-pass approach [28] for
force contributions. We note that the dynamic stencils generated by the
collision detection system are not colored and are therefore processed
in a serial manner. However, they are typically a small fraction of the
total amount of processed stencils, involving simpler Hessian and force
computations, and thus accounting for a small percentage of the total
computation as shown in Figure 11.

7 DISCUSSION

All the features we have presented and evaluated in this work increase
the performance of our draping simulations without significantly affect-
ing their quality.

The convergence features described in § 5 are largely specific to
drape simulations. It is worth noting the impact of carefully choosing
solver parameters, since very significant speed-ups can be obtained
without significantly impacting the result.

The performance features described in § 6 are more generally ap-
plicable and are also capable of providing significant gains. Table 7
summarizes the cumulative contributions of the different performance
features relative to the baseline and to each other. The net gain of all
the applied features results in a significant speedup of 5.89x, with the
Dual System Matrix as the largest contributor by far.

Figure 11 shows a breakdown of the average cost of a simulation step
after applying all the features presented in this paper. One remarkable
observation is that the system setup (mainly force and Hessian accu-
mulations) takes significantly more time than the actual linear solve,
even after the big improvement achieved in § 6.1. This contrasts with
experimental results found in previous work dealing with similar prob-
lems [2]. However, it is not surprising when considering the differences
in time stepping strategies. The smaller time step used in our case
is favoring both the system to be better conditioned (as explained in
§ 3.1.3) and the initial inertial guess (§ 3.1) to be closer to the solution,
leading to rapidly converging solves. This does not mean that a smaller
time step is necessarily better. An excessively small time step can lead
to a very inefficient solver, spending most of the resources setting up a
problem and then barely advancing it.

Further discussion arises, then, regarding how larger time steps
(and more generally, stiffer linear problems) could reshape the time
distributions and how it could also change the impact of the evaluated
features. Arguably, the net effect of the DoF reordering could be more
significant, as there would be an increase in memory accesses during the
linear solve. Similarly, the preconditioner could also gain in efficiency,
maybe even leading to a different preferred choice: the Incomplete
Cholesky computation time could pay off given the larger reduction in
CG iterations.

Some of the features we presented (§ 6.1, 6.4, 6.5) require some pre-
computations that run before starting the simulation. The average pre-
computation time for the production scenes is 5.30s, which accounts
for less than 1% of the total simulation time and can therefore be
considered negligible.

In order to validate that our conclusions are not biased by the rela-
tively small size of the garment dataset, and therefore generalize to a
wider range of garments, we have curated and simulated a validation
set made of 60 production garments. The simulation was done with
the full set of convergence and performance features for the validation
to remain computationally tractable. We computed the distribution of
computation time, normalized by the number of degrees of freedom
to make the metric comparable across garments. We then compared
the results between the original 10 garments and the validation set,
with the assumption that a similar qualitative distribution implies a
similar overall quantitative effect of the features presented in this paper.
Figure 12 shows indeed good agreement between both sets of garments,
which is also true for the average early exit values (0.75s for the 10
original garments and 0.71s for the validation set), suggesting that our
conclusions seem to generalize to a wider range of garments. We refer
the reader to Appendix C in the supplementary material for additional
information, including renders of the entire validation set.

7.1 Code Complexity
The complexity of implementing and maintaining an algorithm is an
important factor to consider when developing any system. Having this
information at hand, together with performance numbers, can help
practitioners plan and prioritize the implementation of features. This
diagnosis is typically neglected in academic literature, and for a good
reason: it is hard to make an objective assessment. Personal assess-
ments are subjective, influenced by skills and emotion. Code analysis
tools are necessarily more objective but suffer from their generality:
they likely fail to capture the intricacies specific to numerical and
geometrical algorithms.

With this caveat in mind, but assuming code analysis tools are at
least directionally correct, we use the Cognitive Complexity metric [11]
already adopted by commercial code analysis suites. We compute the
Cognitive Complexity of the implementation of each feature, excluding
the routines of third-party libraries, and report the results in Table 7.

Interestingly, the Dual System Matrix (§ 6.1) provides the largest
speedup but also has the largest cognitive complexity, in both cases by
a wide margin. In practice, this feature requires changes that span the
entire simulator: it is therefore advisable to implement it early on. On
the other end, the Mixed Numerical Precision (§ 6.2) has a complexity
of zero: a type alias and a few type casting calls. The remaining features
(§ 6.3, § 6.4, § 6.5) have comparable moderate complexities. They

Metric Dual Matrix Mixed Numerical Precision Preconditioning DoF Reordering Stencil Coloring

Speedup against previous column 4.19 1.13 1.12 1 1.11
Speedup against Baseline 4.19 4.73 5.30 5.30 5.89
Cognitive Complexity 227 0 31 23 20

Table 7: Speedup and Cognitive Complexity for all features related to § 6. Speedup is measured as the average between the production garments
(Figures 1 and 4). The Dual System Matrix leads by a wide margin both in terms of speedup and complexity.

Fig. 12: The total drape simulation time per DoF for both the 10 original
garments (blue) and the validation set (orange), plotted at the bottom.
Their corresponding probability density functions, computed using Kernel
Density Estimation (KDE), are plotted at the top. Both datasets yield
very similar distributions, suggesting good generalization of the proposed
features.

benefit from being very localized in the codebase, while relying on
third-party toolkits for some of the heavy work.

7.2 Comparison with Other Approaches
In this section, we compare our simulator to existing solutions to high-
light its benefits, both qualitatively and quantitatively. In particular,
we compare our drapes to the ones generated by a real-time simulator
based on PBD which, as argued in § 2, belongs to a family of techniques
that trades accuracy for speed. We also compare the performance of
our solver to C-IPC, a state of the art simulator similar to ours in that it
is a global method, thus prioritizing accuracy over speed.

PBD: Figure 13 shows side-by-side comparisons of the drapes from
this simulator and a real-time simulator based in PBD. Both simulators
use the same energy formulation and the same timestep size, with a
PBD-style treatment for the latter [3] using 15 projection iterations.
Mechanical parameters for both solvers were derived from the same
captured data. We used the real-time simulator to assemble and arrange
all the garments in this paper, using a discretization of 1cm which is
standard in CAD for apparel [10, 18]. Qualitatively comparing the
drapes between both simulators provides evidence of how a global
simulator can dramatically improve the accuracy of the resulting drape
(albeit at the cost of speed). In general, the PBD simulator is able to
match the real behavior for small fabric samples, and its interactivity
and stability capabilities are crucial for the design stage. However, for
larger garments the behavior starts to deviate, as shown in the figure.

C-IPC: We then compared our simulator and C-IPC, a state of the
art global simulator whose code is open source. We used the C-IPC
simulator as is, using a bundled scene as the starting point where a
square patch of fabric falls onto a sphere. We reproduced the same

Fig. 13: Comparison of a dress and a sports outfit draped with the real
time simulator (left) and our proposed simulator (right). The real-time
draping of the dress is clearly overly elongated, but is accurately treated
in our simulator. In the case of the sports outfit, characteristic subtle
wrinkles emerge naturally when using an accurate simulator.

Scene Nb DoFs C-IPC (s) Ours (s)

baseline 256353 2643 661
coarse 113763 1392 315

stiff stretch 256353 4443 710
compliant bending 256353 4512 722

stiff bending 256353 4910 721
2 stack 227526 9041 790
3 stack 341289 19670 1261

Table 8: Comparisons of wall-clock computation times between C-IPC
and our simulator for 1 second of simulation. The baseline scene is a
1m2 fabric patch falling on a sphere as bundled with the C-IPC codebase.
The stiff stretch scene uses stretch values 1 order of magnitude higher,
reaching the range found in real fabrics. The compliant bending and stiff
bending scenes use bending values 1 order of magnitude lower (resp.
higher) for a more diverse drapability. The coarse scene has a lower
discretization resolution, matching the one used for the garments in this
paper. The 2 stack and 3 stack have respectively 2 and 3 fabric patches
stacked on top of each other.

scene in our simulator, with the same positions, the same discretization
resolution and hand-tuned parameters to try to achieve some simi-
larity with the C-IPC drapings, which is particularly difficult given
the difference in constitutive models, collision mechanisms, friction
parametrizations, damping behavior, etc. We then created new scenes
by altering some fundamental features of the original scene, in order
to test different conditions: a lower resolution to match the resolution
used in our simulator, a fabric with stiffer stretch parameters to match
the behavior of real fabrics, fabrics with either stiffer or more compliant
bending parameters for a wider drapability range, and additional fabric
patches to mimic multi-layer garment constructions. Table 8 compares
the performance numbers between both simulators for all scenes, and
side-by-side renders are provided in Appendix D in the supplemen-
tary material, together with the respective material parameters. Both
simulators reach interpenetration-free drapes for all scenes. C-IPC has
the notorious advantage of allowing smaller contacts distances than in
any discrete approach, which could lead to better handling of multiple
stacked contacts. However, it is significantly slower than our simulator
(from 4x to 15x depending on the scene) despite using timesteps up

to 0.04s, and even prohibitively slow in some cases for production
pipelines.

8 CONCLUSIONS

In this paper, we have discussed and evaluated a set of features to im-
prove the performance of a production Newton-Backward Euler draping
simulator without sacrificing its accuracy. We have introduced a set of
convergence features that alter the dynamics to produce a faster drape,
and a set of performance features that speed up numerical computations.
We have implemented and evaluated all features experimentally using
a set of production scenes with realistic materials. We have then shown
that relatively simple changes, such as the careful tuning of solver
parameters and the separate treatment of static and dynamic topology
energies can lead to significant performance benefits.

While our simulator has successfully simulated thousands of produc-
tion scenes, it is not without its limitations, both in terms of robustness
and of missed performance opportunities.

Our discrete collisions approach can handle virtually all configura-
tions we have found in production. However, it relies on the use of
a small time step and the fact that drape simulations do not typically
involve fast moving elements. Therefore, it provides no theoretical
guarantees of either resolving pre-existing penetrations from the input
mesh or preventing new ones from appearing. We would like to explore
the use of more theoretically robust approaches, such as Incremental Po-
tential Contact [33,34], together with untangling mechanisms [1,28,66]
for those bad initial configurations. While more computationally ex-
pensive, these techniques would provide better guarantees and likely
allow us to safely increase the time step of the simulations.

We have refrained from exploring low level optimizations, such as
explicit SIMD implementations or hardware-specific, cache-friendly
data structures. We would like to explore ways of introducing these
in a production environment without ending up with a system that is
hard to extend, maintain and debug. According to Figure 11, force and
Hessian computations seem to be a good place to start. We have also
focused on exploiting the capabilities of modern CPU hardware, as
it is a cheaper commodity in cloud computing environments used in
production. However, we expect cloud GPU computing to become a
more accessible commodity in the near future. A lot of research has
already proven that great benefits come from running full simulations
on the GPU [13,62], including GPU-friendly preconditioning strategies
[69, 72] and collision detection and resolution [30, 32, 63]. We will
explore the migration of our production solver to a massively parallel
GPU implementation.

Finally, since our simulator is integrating the equations of motion, a
few adjustments can enable it to simulate garments in motion, including
animated avatars and interaction with other scene elements.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their
insightful suggestions, Harrison Johnson and Loreto Pérez for their gar-
ment designs and the SEDDI teams in general for their help and support.
This work was funded in part by the Spanish Ministry of Science, Inno-
vation and Universities (MCIN/AEI/10.13039/501100011033) and the
European Union NextGenerationEU/PRTR programs through the Tai-
LOR project (CPP2021-008842). Dr. José María Pizana was partially
supported by an Industrial Doctorate fellowship (DIN2019-010912).

REFERENCES

[1] D. Baraff, A. Witkin, and M. Kass. Untangling cloth. ACM Transactions
on Graphics (TOG), 22(3):862–870, 2003. 13

[2] D. Baraff and A. P. Witkin. Large steps in cloth simulation. Proceedings
of the 25th annual conference on Computer graphics and interactive
techniques, 1998. 2, 4, 8, 11

[3] J. Bender, M. Müller, and M. Macklin. Position-Based Simulation Meth-
ods in Computer Graphics. In M. Zwicker and C. Soler, eds., Eurographics
2015 - Tutorials. The Eurographics Association, 2015. doi: 10.2312/egt.
20151045 3, 12

[4] M. Benzi. Preconditioning techniques for large linear systems: a survey.
Journal of computational Physics, 182(2):418–477, 2002. 9

[5] A. Berg, S. Hedrich, T. Lange, K.-H. Magnus, and B. Mathews. The
apparel sourcing caravan’s next stop: Digitization, 2017. 1

[6] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. Projective dynamics:
Fusing constraint projections for fast simulation. ACM Trans. Graph.,
33(4), jul 2014. doi: 10.1145/2601097.2601116 2

[7] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions,
contact and friction for cloth animation. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, pp. 594–
603, 2002. 4

[8] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds
and wrinkles. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 01 2003. doi: 10.1145/1198555.1198573 4

[9] G. E. Brown, M. Overby, Z. Forootaninia, and R. Narain. Accurate dissi-
pative forces in optimization integrators. ACM Transactions on Graphics
(TOG), 37(6):1–14, 2018. 8

[10] Browzwear. VStitcher. https://browzwear.com/products/
v-stitcher, 2023. 3, 12

[11] G. A. Campbell. Cognitive complexity: An overview and evaluation. In
Proceedings of the 2018 international conference on technical debt, pp.
57–58, 2018. 11

[12] G. Cirio, J. Lopez-Moreno, D. Miraut, and M. A. Otaduy. Yarn-level
simulation of woven cloth. ACM Trans. on Graphics (Proc. of ACM
SIGGRAPH Asia), 33(6), 2014. 8

[13] G. Cirio, J. Lopez-Moreno, and M. A. Otaduy. Yarn-level cloth simulation
with sliding persistent contacts. IEEE transactions on visualization and
computer graphics, 23(2):1152–1162, 2016. 13

[14] T. F. Coleman and J. J. More. Estimation of sparse jacobian matrices and
graph coloring problems. Journal of Numerical Analysis, 20:187–209,
1983. 11

[15] N. Corporation. NVIDIA PhysX SDK. https://github.com/
NVIDIA-Omniverse/PhysX, December 2018. 3

[16] E. Coumans and Y. Bai. Bullet Physics SDK. http://bulletphysics.
org/, 2016–2023. 3

[17] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In Proceedings of the 1969 24th National Conference, ACM
’69, p. 157–172. Association for Computing Machinery, New York, NY,
USA, 1969. doi: 10.1145/800195.805928 10

[18] C. V. Fashion. Clo. https://www.clo3d.com/es/clo, 2023. 3, 12
[19] M. Fratarcangeli and F. Pellacini. Scalable partitioning for parallel position

based dynamics. In Computer Graphics Forum, vol. 34, pp. 405–413.
Wiley Online Library, 2015. 10

[20] M. Fratarcangeli, V. Tibaldo, and F. Pellacini. Vivace: A practical gauss-
seidel method for stable soft body dynamics. ACM Transactions on
Graphics (TOG), 35(6):1–9, 2016. 2, 10, 11

[21] T. F. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. M. Teran. Opti-
mization integrator for large time steps. IEEE transactions on visualization
and computer graphics, 21(10):1103–1115, 2015. 2, 4, 6

[22] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder. Discrete shells.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’03, p. 62–67. Eurographics Association,
Goslar, DEU, 2003. 4

[23] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
4, 9

[24] H. Han, M. Sun, S. Zhang, D. Liu, and T. Liu. Gpu cloth simula-
tion pipeline in lightchaser animation studio. In SIGGRAPH Asia 2021
Technical Communications, SA ’21 Technical Communications. Associ-
ation for Computing Machinery, New York, NY, USA, 2021. doi: 10.
1145/3478512.3488616 3

[25] D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. Robust treatment
of simultaneous collisions. In ACM SIGGRAPH 2008 papers, pp. 1–4.
2008. 4

[26] G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs. An implicit finite
element method for elastic solids in contact. In Proceedings Computer
Animation 2001. Fourteenth Conference on Computer Animation (Cat.
No. 01TH8596), pp. 136–254. IEEE, 2001. 4

[27] V. Hämmerle, C. Mühlenbein, M. Rüßmann, C. Gauger, and S. Rohrhofer.
Why fashion must go digital—end to end, 2020. 1

[28] T. Kim and D. Eberle. Dynamic deformables: Implementation and produc-
tion practicalities (now with code!). In ACM SIGGRAPH 2022 Courses,
SIGGRAPH ’22. Association for Computing Machinery, New York, NY,
USA, 2022. doi: 10.1145/3532720.3535628 3, 5, 8, 9, 10, 11, 13

[29] T. Kim and D. Eberle. Hobak: A Library for Squashing Things. https:
//github.com/theodorekim/HOBAKv1, 2022. 3

https://doi.org/10.2312/egt.20151045
https://doi.org/10.2312/egt.20151045
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/1198555.1198573
https://browzwear.com/products/v-stitcher
https://browzwear.com/products/v-stitcher
https://github.com/NVIDIA-Omniverse/PhysX
https://github.com/NVIDIA-Omniverse/PhysX
http://bulletphysics.org/
http://bulletphysics.org/
https://doi.org/10.1145/800195.805928
https://www.clo3d.com/es/clo
https://doi.org/10.1145/3478512.3488616
https://doi.org/10.1145/3478512.3488616
https://doi.org/10.1145/3532720.3535628
https://github.com/theodorekim/HOBAKv1
https://github.com/theodorekim/HOBAKv1

[30] L. Lan, G. Ma, Y. Yang, C. Zheng, M. Li, and C. Jiang. Penetration-free
projective dynamics on the gpu. ACM Transactions on Graphics (TOG),
41(4):1–16, 2022. 13

[31] S. Lesser, A. Stomakhin, G. Daviet, J. Wretborn, J. Edholm, N.-H. Lee,
E. Schweickart, X. Zhai, S. Flynn, and A. Moffat. Loki: A unified
multiphysics simulation framework for production. ACM Trans. Graph.,
41(4), jul 2022. doi: 10.1145/3528223.3530058 3

[32] C. Li, M. Tang, R. Tong, M. Cai, J. Zhao, and D. Manocha. P-cloth:
interactive complex cloth simulation on multi-gpu systems using dynamic
matrix assembly and pipelined implicit integrators. ACM Transactions on
Graphics (TOG), 39(6):1–15, 2020. 13

[33] M. Li, Z. Ferguson, T. Schneider, T. R. Langlois, D. Zorin, D. Panozzo,
C. Jiang, and D. M. Kaufman. Incremental potential contact: intersection-
and inversion-free, large-deformation dynamics. ACM Trans. Graph.,
39(4):49, 2020. 4, 5, 13

[34] M. Li, D. M. Kaufman, and C. Jiang. Codimensional incremental potential
contact. ACM Trans. Graph., 40(4), 2021. doi: 10.1145/3450626.3459767
3, 5, 13

[35] X. Li, Y. Fang, L. Lan, H. Wang, Y. Yang, M. Li, and C. Jiang. Subspace-
preconditioned gpu projective dynamics with contact for cloth simulation.
In SIGGRAPH Asia 2023 Conference Papers, pp. 1–12, 2023. 2

[36] C. Liu, W. Xu, Y. Yang, and H. Wang. Automatic digital garment ini-
tialization from sewing patterns. ACM Trans. Graph. (SIGGRAPH), jul
2024. 7

[37] T. Liu, S. Bouaziz, and L. Kavan. Quasi-newton methods for real-time
simulation of hyperelastic materials. ACM Trans. Graph., 36(4), jul 2017.
doi: 10.1145/3072959.2990496 2

[38] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T.-Y.
Kim. Primal/dual descent methods for dynamics. In Computer Graphics
Forum, vol. 39, pp. 89–100. Wiley Online Library, 2020. 2, 3

[39] M. Macklin, M. Müller, and N. Chentanez. Xpbd: Position-based sim-
ulation of compliant constrained dynamics. In Proceedings of the 9th
International Conference on Motion in Games, MIG ’16, p. 49–54. Asso-
ciation for Computing Machinery, New York, NY, USA, 2016. doi: 10.
1145/2994258.2994272 3

[40] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Unified particle
physics for real-time applications. ACM Transactions on Graphics (TOG),
33(4):104, 2014. 3

[41] S. Martin, B. Thomaszewski, E. Grinspun, and M. Gross. Example-based
elastic materials. ACM Transactions on Graphics (TOG), 30(4):1–8, 2011.
4

[42] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and
E. Sifakis. Efficient elasticity for character skinning with contact and
collisions. In ACM SIGGRAPH 2011 papers, pp. 1–12. 2011. 4

[43] E. Miguel, R. Tamstorf, D. Bradley, S. C. Schvartzman, B. Thomaszewski,
B. Bickel, W. Matusik, S. Marschner, and M. A. Otaduy. Modeling and
estimation of internal friction in cloth. ACM Transactions on Graphics
(TOG), 32(6):1–10, 2013. 4

[44] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position based
dynamics. J. Vis. Comun. Image Represent., 18(2):109–118, apr 2007.
doi: 10.1016/j.jvcir.2007.01.005 3

[45] K. Museth, N. Avramoussis, and D. Bailey. Openvdb. In ACM
SIGGRAPH 2019 Courses, pp. 1–56. 2019. 4

[46] M. Müller. Hierarchical Position Based Dynamics. In F. Faure and
M. Teschner, eds., Workshop in Virtual Reality Interactions and Physical
Simulation "VRIPHYS" (2008). The Eurographics Association, 2008. doi:
10.2312/PE/vriphys/vriphys08/001-010 3

[47] R. Narain, A. Samii, and J. F. O’Brien. Adaptive anisotropic remeshing for
cloth simulation. ACM Transactions on Graphics, 31(6):147:1–10, Nov.
2012. Proceedings of SIGGRAPH Asia. 3

[48] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New
York, NY, USA, 2e ed., 2006. 2, 4

[49] Optitex. Pattern Design Software 3D. https://optitex.com/es/
products/2d-and-3d-cad-software/, 2023. 3

[50] M. Overby, G. E. Brown, J. Li, and R. Narain. Admm ⊇ projective
dynamics: Fast simulation of hyperelastic models with dynamic con-
straints. IEEE Transactions on Visualization and Computer Graphics,
23(10):2222–2234, 2017. doi: 10.1109/TVCG.2017.2730875 2

[51] J. W. S. B. Rayleigh. The theory of sound, vol. 2. Macmillan, 1896. 8
[52] B. Roberts-Islam. Is digitization the savior of the fashion industry?, 2020.

1
[53] S. P. Sastry, E. Kultursay, S. M. Shontz, and M. T. Kandemir. Improved

cache utilization and preconditioner efficiency through use of a space-

filling curve mesh element-and vertex-reordering technique. Engineering
with Computers, 30:535–547, 2014. 10

[54] SideFX. Houdini. https://www.sidefx.com/products/houdini/,
2023. 3

[55] C. Soler, T. Martin, and O. Sorkine-Hornung. Cosserat rods with projective
dynamics. In Computer Graphics Forum, vol. 37, pp. 137–147. Wiley
Online Library, 2018. 3

[56] G. Sperl, R. Narain, and C. Wojtan. Homogenized yarn-level cloth. ACM
Transactions on Graphics (TOG), 39(4):48–1, 2020. 5

[57] J. Stam. Nucleus: Towards a unified dynamics solver for computer graph-
ics. pp. 1 – 11, 09 2009. doi: 10.1109/CADCG.2009.5246818 3

[58] R. M. Sánchez-Banderas and M. A. Otaduy. Strain rate dissipation
for elastic deformations. Computer Graphics Forum (Proc. of the
ACM SIGGRAPH / Eurographics Symposium on Computer Animation),
37(8):161–170, 2018. 4, 8

[59] R. Tamstorf and E. Grinspun. Discrete Bending Forces and Their Jacobians.
Graph. Models, 75(6):362–370, Nov. 2013. doi: 10.1016/j.gmod.2013.07
.001 4

[60] R. Tamstorf, T. Jones, and S. F. McCormick. Smoothed aggregation
multigrid for cloth simulation. ACM Trans. Graph., 34(6), nov 2015. doi:
10.1145/2816795.2818081 3, 4

[61] M. Tang, R. Tong, Z. Wang, and D. Manocha. Fast and exact continuous
collision detection with bernstein sign classification. ACM Transactions
on Graphics (TOG), 33(6):1–8, 2014. 5

[62] M. Tang, H. Wang, L. Tang, R. Tong, and D. Manocha. Cama: Contact-
aware matrix assembly with unified collision handling for gpu-based cloth
simulation. In Computer Graphics Forum, vol. 35, pp. 511–521. Wiley
Online Library, 2016. 4, 13

[63] M. Tang, T. Wang, Z. Liu, R. Tong, and D. Manocha. I-cloth: Incremen-
tal collision handling for gpu-based interactive cloth simulation. ACM
Transactions on Graphics (TOG), 37(6):1–10, 2018. 4, 13

[64] S. Toledo. Improving the memory-system performance of sparse-
matrix vector multiplication. IBM Journal of research and development,
41(6):711–725, 1997. 10

[65] T. Trusty, D. Kaufman, and D. I. Levin. Mixed variational finite ele-
ments for implicit simulation of deformables. In SIGGRAPH Asia 2022
Conference Papers, pp. 1–8, 2022. 6

[66] P. Volino and N. Magnenat-Thalmann. Resolving surface collisions
through intersection contour minimization. ACM Transactions on
Graphics (TOG), 25(3):1154–1159, 2006. 13

[67] P. Volino, N. Thalmann, and F. Faure. A simple approach to nonlinear
tensile stiffness for accurate cloth simulation. ACM Transactions on
Graphics, 28, 08 2009. doi: 10.1145/1559755.1559762 4

[68] H. Wang. Defending continuous collision detection against errors. ACM
Transactions on Graphics (TOG), 33(4):1–10, 2014. 5

[69] H. Wang and Y. Yang. Descent methods for elastic body simulation on the
gpu. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016. 13

[70] Z. Wang, M. Tang, R. Tong, and D. Manocha. Tightccd: Efficient and ro-
bust continuous collision detection using tight error bounds. In Computer
Graphics Forum, vol. 34, pp. 289–298. Wiley Online Library, 2015. 5

[71] A. J. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015. 9
[72] B. Wu, Z. Wang, and H. Wang. A gpu-based multilevel additive

schwarz preconditioner for cloth and deformable body simulation. ACM
Transactions on Graphics (TOG), 41(4):1–14, 2022. 13

[73] Z. Xian, X. Tong, and T. Liu. A scalable galerkin multigrid method
for real-time simulation of deformable objects. ACM Transactions on
Graphics (TOG), 38(6):1–13, 2019. 2

[74] H. Xu and J. Barbič. Example-based damping design. ACM Transactions
on Graphics (TOG), 36(4):1–14, 2017. 8

[75] K. Yamane and Y. Nakamura. Stable penalty-based model of frictional con-
tacts. In Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006., pp. 1904–1909. IEEE, 2006. 4

[76] C. Yuksel, J. M. Kaldor, D. L. James, and S. Marschner. Stitch meshes for
modeling knitted clothing with yarn-level detail. ACM Transactions on
Graphics (TOG), 31(4):1–12, 2012. 7

[77] J. E. Zhang, J. Dumas, Y. Fei, A. Jacobson, D. L. James, and D. M. Kauf-
man. Progressive simulation for cloth quasistatics. ACM Transactions on
Graphics (TOG), 41(6):1–16, 2022. 7

https://doi.org/10.1145/3528223.3530058
https://doi.org/10.1145/3450626.3459767
https://doi.org/10.1145/3072959.2990496
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.2312/PE/vriphys/vriphys08/001-010
https://doi.org/10.2312/PE/vriphys/vriphys08/001-010
https://optitex.com/es/products/2d-and-3d-cad-software/
https://optitex.com/es/products/2d-and-3d-cad-software/
https://doi.org/10.1109/TVCG.2017.2730875
https://www.sidefx.com/products/houdini/
https://doi.org/10.1109/CADCG.2009.5246818
https://doi.org/10.1016/j.gmod.2013.07.001
https://doi.org/10.1016/j.gmod.2013.07.001
https://doi.org/10.1145/2816795.2818081
https://doi.org/10.1145/2816795.2818081
https://doi.org/10.1145/1559755.1559762

	Introduction
	Related Work
	Integration Schemes
	Cloth Simulation Software

	Integrator Overview
	Backward Euler-Newton Integrator
	Conjugate Gradient
	Line Search
	Time Splitting

	Energies
	Collision Detection

	Experimental Setup
	Methodology
	Apparatus
	Full Garments
	Synthetic Scenes

	Convergence Features
	Solver Parameters
	Broad Analysis
	Narrow Analysis

	Initial Relaxation
	Near-Critical Damping
	Early Stop Criterion

	Performance Features
	Dual System Matrix
	Single vs Double Precision
	Preconditioning
	Degrees of Freedom Reordering
	Stencil Coloring

	Discussion
	Code Complexity
	Comparison with Other Approaches

	Conclusions

